Aloha :)
zu a) Hier brauchst du fast nichts zu rechnen. Definiere dir eine Funktion$$f(t)\coloneqq\arcsin(t)\quad\text{mit}\quad f'(t)=\frac{1}{\sqrt{1-t^2}}$$Dann siehst du sofort, dass es sich um ein Standardintegral handelt$$\int f'(t)\cdot f(t)\,dt=\frac{f^2(t)}{2}+\text{const}$$und kannst das Ergebnis sofort hinschreiben:$$\int\limits_0^1\frac{\arcsin(t)}{\sqrt{1-t^2}}\,dt=\left[\frac12\arcsin^2(t)\right]_0^1=\frac12\left(\left(\frac\pi2\right)^2-0^2\right)=\frac{\pi^2}{8}$$
zu b) Hier würde ich partiell integrieren:$$\int\frac{\ln(t)}{t^2}\,dt=\int\underbrace{\frac{1}{t^2}}_{=u'}\cdot\underbrace{\ln(t)}_{=v}\,dt=\underbrace{\left(-\frac1t\right)}_{=u}\cdot\underbrace{\ln(t)}_{=v}-\int\underbrace{\left(-\frac1t\right)}_{=u}\cdot\underbrace{\frac1t}_{=v'}\,dt$$$$\phantom{\int\frac{\ln(t)}{t^2}\,dt}=-\frac{\ln(t)}{t}+\int\frac{1}{t^2}\,dt=-\frac{\ln(t)}{t}-\frac1t+\text{const}=-\frac{\ln(t)+1}{t}+\text{const}$$In den angegeben Grenzen gilt daher:$$\int\limits_1^\infty\frac{\ln(t)}{t^2}\,dt=-\lim\limits_{t\to\infty}\frac{\ln(t)+1}{t}+\frac{\ln(1)+1}{1}=-0+1=1$$