\( \left[\begin{array}{lll} {[2]_{3}} & {[1]_{3}} & {[0]_{3}} \\ {[1]_{3}} & {[2]_{3}} & {[1]_{3}} \\ {[2]_{3}} & {[1]_{3}} & {[2]_{3}} \end{array}\right] \) 2. Zeile plus dritte
\( \left[\begin{array}{lll} {[2]_{3}} & {[1]_{3}} & {[0]_{3}} \\ {[0]_{3}} & {[0]_{3}} & {[0]_{3}} \\ {[2]_{3}} & {[1]_{3}} & {[2]_{3}} \end{array}\right] \) 3. Zeile minus erste
\( \left[\begin{array}{lll} {[2]_{3}} & {[1]_{3}} & {[0]_{3}} \\ {[0]_{3}} & {[0]_{3}} & {[0]_{3}} \\ {[0]_{3}} & {[0]_{3}} & {[2]_{3}} \end{array}\right] \)
==> \( \left(\begin{array}{l} {[x]_{3}} \\ {[y]_{3}} \\ {[z]_{3}} \end{array}\right) \in Kern(A) \)
Also z=0 und y beliebig und 2x+y=0 also x=y
Für alle \( y \in \mathbb{F}_{3}\) ist \( \left(\begin{array}{l} {[y]_{3}} \\ {[y]_{3}} \\ {[0]_{3}} \end{array}\right) = y\cdot \left(\begin{array}{l} {[1]_{3}} \\ {[1]_{3}} \\ {[0]_{3}} \end{array}\right) \in Kern(A) \)
Also dim = 1.
\( \varphi(v)=\left(\begin{array}{l} {[0]_{3}} \\ {[1]_{3}} \\ {[2]_{3}} \end{array}\right) . \)
Gilt offenbar immer für \( v=\left(\begin{array}{l} {[x]_{3}} \\ {[x]_{3}} \\ {[1]_{3}} \end{array}\right) . \)