Aufgabe:
Gegeben ist das gleichschenklige Dreieck ABC mit A (2/6/0), B (0/5/2) und C (3/1,5/1) sowie der Spitze S, die sich auf der Gerade h:x = \( \begin{pmatrix} 3\\1,5\\1 \end{pmatrix} \) + t × \( \begin{pmatrix} 1\\0\\1\end{pmatrix} \) bewegt.
Bestimme den Rauminhalt V(t) der Pyramide.
Problem/Ansatz:
Ich kenne die Formel für das Volumen einer Pyramide: V = 1/3 G×h.
G habe ich berechnet: 3√5. Wie finde ich jetzt die Höhe der Pyramide in Abhängigkeit von t raus? Welche Vektor ist die Höhe? Also zwischen S und welchem Punkt? Ich hatte die Überlegung einfach C als Bezugspunkt zu nehmen, da er der Lotfußpunkt der Ebene ABC und Gerade ist. Man kann aber nicht davon ausgehen, dass es eine gerade Pyramide ist. Könnte ja auch sein, dass sie schief ist.
Könnt ihr mir helfen?