Aufgabe:
Für \( p \in P_{2} \), den Polynomfunktionen vom Grad \( \leq 2 \), betrachten wir die lineare Abbildung \( F: P_{2} \rightarrow P_{2} \) (ohne Beweis) mit
\( [F(p)](x)=p(x+1)+p^{\prime}(x), \)
\( \mathcal{B}=\left(p_{0}, p_{1}, p_{2}\right) \) bezeichnet wie ültich die Monomiale Basis von \( P_{2} \) mit \( p_{k}(x)=x^{k} \).
(a) Bestimmen Sie die Koordinatendarstellung von \( F \) bezüglich der Monomialen Basis \( \mathcal{B} \).
(b) Bestimmen Sie eine Basis \( \mathcal{C}=\left(c_{0}, c_{1}, c_{2}\right) \) von \( P_{2} \), so dass \( { }_{\mathcal{C}} F^{\mathcal{B}} \) die Einheitsmatrix ist. Benutzen Sie die Basis-Eigenschaft von \( \mathcal{B} \) um zu zeigen, dass auch \( \mathcal{C} \) eine Basis ist.
Problem/Ansatz:
Hey, für die Aufgabe b) weiß ich nicht, wie man das errechnet. Die a) habe ich. Wäre nett, wenn jemand den Lösungsweg nennt.