0 Daumen
243 Aufrufe

Aufgabe:

Bilde die Stammfunktion:

f(x)= 4 + 4*(tan(x))^2


Problem/Ansatz:

Ich weiß nicht, wie die ersteller des Blattes auf die Lösung von 4tan(x) kommen. Könnt ihr mir bitte helden

Avatar von

2 Antworten

+1 Daumen
 
Beste Antwort

Aloha :)

Du kannst die Funktion wie folgt umformen:$$f(x)=4+4\tan^2x=4\cdot\left(1+\tan^2x\right)=4\cdot\left(\frac{\cos^2x}{\cos^2x}+\frac{\sin^2x}{\cos^2x}\right)=4\,\frac{\cos^2x+\sin^2x}{\cos^2x}$$$$\phantom{f(x)}=4\,\frac{\cos x\cdot\cos x-\sin x\cdot(-\sin x)}{\cos^2x}=4\,\frac{(\sin x)'\cdot\cos x-\sin x\cdot(\cos x)'}{(\cos x)^2}$$Du erkennst mit der Quotientenregel:$$\phantom{f(x)}=4\,\left(\frac{\sin x}{\cos x}\right)'=\left(4\,\tan x\right)'$$und kannst daher folgern:$$\int f(x)\,dx=\int\left(4\tan x\right)'\,dx=4\tan x+\text{const}$$

Du kannst dir merken:\(\quad(\tan x)'=1+\tan^2x\).

Avatar von 152 k 🚀

Vielen Dank für die Hilfe

0 Daumen
Avatar von 39 k

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community