Aufgabe:
Gib die folgenden Funktionswerte ohne Hilfe des Taschenrechners an. Nutze dazu die Werte für besondere Winkel.
a) \( \sin 3 \pi \)
b) \( \sin (-9 \pi) \)
c) \( \cos 7 \pi \)
d) \( \cos (-3 \pi\))
e)\( \sin \left(-\frac{5}{2} \pi\right) \)
f) \( \sin 390^{\circ} \)
g) \( \cos \frac{5}{6} \pi \)
h) \( \cos 750^{\circ} \)
i) \( \sin \frac{11}{2} \pi \)
k) \( \sin 585^{\circ} \)
1) \( \cos \left(-\frac{9}{2} \pi\right) \)
m) \( \cos \frac{11}{4} \pi \)…
Problem/Ansatz:
Leider komme ich bei dieser Aufgabe überhaupt nicht weiter. Könnte mir jemand eventuell ein paar Teilaufgaben vorrechnen?
Die Werte für besondere Winkel sind die in der folgenden Tabelle.
LG ![ABE61680-2E1C-47EA-92B2-A0BFC89C6DB7.jpeg](https://www.mathelounge.de/?qa=blob&qa_blobid=10980506106866438406)
Text erkannt:
\( \begin{array}{l}\sin 0=\frac{1}{2} \sqrt{0}=\cos \frac{\pi}{2} \\ \sin \frac{\pi}{6}=\frac{1}{2} \sqrt{1}=\cos \frac{\pi}{3} \\ \sin \frac{\pi}{4}=\frac{1}{2} \sqrt{2}=\cos \frac{\pi}{4} \\ \sin \frac{\pi}{3}=\frac{1}{2} \sqrt{3}=\cos \frac{\pi}{6} \\ \sin \frac{\pi}{2}=\frac{1}{2} \sqrt{4}=\cos 0\end{array} \)