Aufgabe:
Gegeben seien Funktionen \( f, g, h: \mathbb{R} \rightarrow \mathbb{R} \)
(a) Sei \( g \) stetig in \( 0, f \) differenzierbar in 0 mit \( f(0)=0 \). Zeigen Sie, dass \( f g \) differenzierbar in 0 ist mit \( (f g)^{\prime}(0)=f^{\prime}(0) g(0) \).
(b) Sei \( -x^{2} \leq h(x) \leq x^{2} \) für alle \( x \in \mathbb{R} \). Zeigen Sie, dass \( h \) differenzierbar ist im Punkt 0 und berechnen Sie \( h^{\prime}(0) \).
Problem/Ansatz:
wie kann ich die Aufgaben loesen/pruefen?