Aloha :)
Nach einer kleinen Umformung des Integranden$$f(x)=\frac{\cos x}{1+x}-\frac{\sin x}{(1+x)^2}=-\frac{1}{(1+x)^2}\cdot\sin x+\frac{1}{1+x}\cdot\cos x$$$$\phantom{f(x)}=\underbrace{\left(\frac{1}{1+x}\right)'}_{=u'}\cdot\underbrace{\sin x}_{=v}+\underbrace{\frac{1}{1+x}}_{=u}\cdot\underbrace{\left(\sin x\right)'}_{=v'}=\left(\underbrace{\frac{1}{1+x}}_{=u}\cdot\underbrace{\sin x}_{=v}\right)'=\left(\frac{\sin x}{1+x}\right)'$$
können wir das Integral sofort angeben:$$\int\limits_0^\infty f(x)\,dx=\left[\frac{\sin x}{1+x}\right]_0^\infty=0-0=0$$
Beachte für den Grenzwert \(x\to\infty\):$$\left|\sin x\right|\le1\implies\left|\frac{\sin x}{1+x}\right|<\left|\frac{1}{1+x}\right|\stackrel{(x\to\infty)}{\to}0$$