gAP: [1, 2, 0.5] + r·([9, 6, 1.5] - [1, 2, 0.5]) = [1, 2, 0.5] + r·[8, 4, 1]
gBQ: [10, 5, 0.75] + s·([-5, 2, 1.5] - [10, 5, 0.75]) = [10, 5, 0.75] + s·[-15, -3, 0.75]
Schnittpunt gAP = gBQ
[1, 2, 0.5] + r·[8, 4, 1] = [10, 5, 0.75] + s·[-15, -3, 0.75]
r = 1/2 ∧ s = 1/3
S = [1, 2, 0.5] + 1/2·[8, 4, 1] = [5, 4, 1]
gAS: [1, 2, 0.5] + r·([5, 4, 1] - [1, 2, 0.5]) = [1, 2, 0.5] + r·[4, 2, 0.5] = [4·r + 1, 2·r + 2, 0.5·r + 0.5]
d^2 = ([4·r + 1, 2·r + 2, 0.5·r + 0.5] - [3, 2, 2.5])^2 = 20.25·r^2 - 18·r + 8
d^2' = 40.5·r - 18 = 0
r = 4/9
F = [1, 2, 0.5] + 4/9·[4, 2, 0.5] = [25/9, 26/9, 13/18]
Da 0 < r < 1 ist F im Bereich von AS.