Aufgabe 1a) Sei \( (\Omega, \mathscr{F}, \mu) \) ein Maßraum und \( f_{n}: \Omega \rightarrow[0, \infty] \) messbare Funktionen.
Zeigen Sie, dass
\( \sum \limits_{n=1}^{\infty} \int f_{n} \mathrm{~d} \mu=\int \sum \limits_{n=1}^{\infty} f_{n} \mathrm{~d} \mu \text {. } \)
b) Berechnen Sie
\( \lim \limits_{n \rightarrow \infty} \int \limits_{0}^{\infty} \cos (x / n)^{5} e^{-x} \mathrm{~d} x \)
Ich brauche Hilfe bei b). Ich habe das Gefühl, dass ich den Satz von der monotonen Konvergenz verwenden muss, aber bin mir nicht ganz sicher, weil die Integrationsvariable x ist.