Aufgabe:
Text erkannt:
Exercise 1 (Riemann approximation of the integral, 5 points)
1. Let \( f: \mathbb{R}^{2} \rightarrow \mathbb{R} \) be the function defined as \( f(x, y)=x y \). Compute the integral
\( \int \limits_{[0,1] \times[0,1]} f(x, y) \mathrm{d} x \mathrm{~d} y \)
by considering the sequence of partitions of \( [0,1] \) induced by the collections \( \pi_{n}=\{k / n: 0 \leq k \leq n\} \) for \( n \geq 1 \).
Problem/Ansatz:
Hätte jemand einen Ansatz? Wäre sehr dankbar