\( \left(2^{x}\right)^{2}=3^{\left(x^{2}\right)} \)
<=> \( 2^{2x}=3^{\left(x^{2}\right)} \)
<=> \( 2x \cdot ln(2)-x^{2}\cdot ln(3) = 0 \)
<=> \( x \cdot ( 2\cdot ln(2)-x\cdot ln(3) )= 0 \)
<=> \( x=0 \text{ oder } x= \frac{ 2\cdot ln(2)}{ln(3)}\)
\( 2^{\left(x^{x}\right)}=\left(2^{x}\right)^{x} \)
<=> \( 2^{\left(x^{x}\right)}= 2^{\left(x^{2}\right)} \)
<=> \( x^{x}= x^2 \)
<=> \( x \cdot ln(x) = 2 \cdot ln(x) \)
<=> \( x \cdot ln(x) - 2 \cdot ln(x) = 0 \)
<=> \( ln(x) \cdot ( x - 2 ) = 0 \)
<=> x=1 oder x=2