Hallo,
Im R2 ist ein Randpunkt definiert durch den entsprechenden Epsilon-Ball, welcher dann Punkte in M und in R2/M hat.
das ist keine saubere Definition!
Es ist \(x=(x_1,x_2)\in\mathbb{R}^2\) ein Randpunkt von \(M\), falls \(\forall r > 0\) gilt: \( B_d(x,r)\cap M \neq \emptyset \) und \(B_d(x,r)\cap M^C \neq \emptyset\).
Hier ist \(B_d(x,r) = \lbrace{y=(y_1,y_2)\in\mathbb{R}^2 \,:\, 2 |x_1-y_1| + 3|x_2-y_2| < r \rbrace} \)
Wenn du dir die Menge mal aufgezeichnet hättest und verstanden hättest wie eine offene Kugel bzgl. \(d\) aussieht, würdest du vermuten, dass \(\partial M = \lbrace{z=(z_1,z_2)\in\mathbb{R}^2\, : \, z_1 = 1\lor z_1 = -1\rbrace} \)
In der Tat, angenommen \(z=(z_1,z_2)\in\mathbb{R}^2\) mit \(z_1 = 1\) und \(r>0\). Dann ist \((1-r/4,z_2)\in B_d(z,r)\cap M\) (nachrechnen!) und \((1+r/4,z_2)\in B_d(z,r)\cap M^C\), also \(z\) ein Randpunkt von \(M\). Analog falls \(z_1=-1\).
Damit ist erstmal gezeigt, dass \( \lbrace{z=(z_1,z_2)\in\mathbb{R}^2\, : \, z_1 = 1\lor z_1 = -1\rbrace} \subseteq\partial M\). Die Idee ist bei der anderen Richtung ähnlich. Nimm z.B. an \(z\notin\partial M \) und zeige \(z\notin \lbrace{z=(z_1,z_2)\in\mathbb{R}^2\, : \, z_1 = 1\lor z_1 = -1\rbrace}\). Das zeigt dann die andere Teilmengenrelation.
Da eine Menge genau dann abgeschlossen ist, wenn sie ihren Rand enthält und genau dann offen ist, wenn sie zu ihrem Rand disjunkt ist, ist \(M\) weder offen noch abgeschlossen.