Aloha :)
Wir überlegen uns zuerst, wie der Gradient einer Funktion \(f(r)\) lautet, die nur vom Betrag \(r\) des Vektors \(\vec r=(x_1;\ldots;x_n)\) abhängt. Die \(i\)-te Komponente dieses Gradienten finden wir mit der Kettenregel:$$\operatorname{grad}_if(r)=\frac{\partial f}{\partial r}\frac{\partial r}{\partial x_i}=\frac{\partial f}{\partial r}\frac{\partial }{\partial x_i}\sqrt{x_1^2+\ldots+x_n^2}=\frac{\partial f}{\partial r}\frac{2x_i }{2\sqrt{x_1^2+\ldots+x_n^2}}=\frac{\partial f}{\partial r}\frac{x_i }{r}$$
Da \(f(r)\) nur von \(r\) abhängt, können wir auch \(f'(r)\) anstatt \(\frac{\partial f}{\partial r}\) schreiben:$$\pink{\operatorname{grad}f(r)}=f'(r)\begin{pmatrix}x_1/r\\\vdots\\x_n/r\end{pmatrix}=f'(r)\,\frac{1}{r}\begin{pmatrix}x_1\\\vdots\\x_n\end{pmatrix}=f'(r)\,\frac{1}{r}\,\vec r\pink{=f'(r)\cdot\vec r^0}$$
Davon müssen wir nun die Divergenz bestimmen. Das ist mit der Produktregel für den Nabla-Operator sehr übersichlich:$$\vec\nabla(f'(r)\cdot\vec r^0)=(\vec\nabla f'(r))\cdot\vec r^0+f'(r)\cdot(\vec\nabla\cdot\vec r^0)=\operatorname{grad}f'(r)\cdot\vec r^0+f'(r)\cdot\operatorname{div}(\vec r^0)$$
Den Gradienten kennen wir schon, haben wir ja oben berechnet.
Für die Divergenz des Einheitsvektors gilt mit Quotienten und Kettenregel:$$\operatorname{div}(\vec r^0)=\sum\limits_{i=1}^n\frac{\partial}{\partial x_i}\left(\frac{x_i}{\sqrt{x_1^2+\ldots+x_n^2}}\right)=\sum\limits_{i=1}^n\frac{1\cdot\sqrt{x_1^2+\ldots+x_n^2}-x_i\cdot\frac{2x_i}{2\sqrt{x_1^2+\ldots+x_n^2}}}{(\sqrt{x_1^2+\ldots+x_n^2})^2}$$$$\phantom{\operatorname{div}(\vec r^0)}=\sum\limits_{i=1}^n\frac{r-\frac{x_i^2}{r}}{r^2}=\sum\limits_{i=1}^n\frac1r-\frac1r\sum\limits_{i=1}^n\frac{x_i^2}{r^2}=\frac{n}{r}-\frac1r=\frac{n-1}{r}$$
Damit erhalten wir als Laplace-Operator für eine Funktion \(f(r)\), die nur vom Betrag \(r\) des Vektors \(\vec r\) abhängt:$$\pink{\Delta f(r)}=(\,f''(r)\cdot\vec r^0\,)\cdot\vec r^0+f'(r)\cdot\frac{n-1}{r}\pink{=f''(r)+(n-1)\cdot\frac{f'(r)}{r}}$$
Da kannst du nun \(f_2(x)\) bzw. \(f_{\ge3}(x)\) bequem einsetzen...