Aufgabe:
Ich habe hier die Gleichung:
(\( \frac{w}{0,5*p*A} \))-2 = (\( \frac{p*A}{2*w} \))2
Problem/Ansatz:
Ich habe bei der Umformung der Gleichung ein Verständnisproblem.
Wenn ich (\( \frac{w}{0,5*p*A} \))-2 umschreibe, dann komme ich zuerst auf \( \frac{1}{\frac({w}{0,5*p*A})2} \) und dann auf
\( \frac{1}{\frac{w2}{0,25*p2*A2}} \)
und dann, um auf die Umformung wie oben in der Gleichung zu kommen, müsste man das was am untersten im Bruch steht zum (obersten) Zähler schreiben. Allerdings steht der untere Bruch nicht in Klammern und damit wäre es mit der Umformung nicht in der Reihenfolge von links nach rechts wie man teilen würde.
Um verständlich zu machen was ich meine: Bei 1/(1/10) ist es so wie 1/0,1 also gleich 10 und dann kann man auch das unterste in den Zähler schreiben. Also 10/1 .
Aber bei 1/1/10 wäre es bei der Reihenfolge von links nach rechts doch zuerst 1/1 und dann 1/10 also 0,1. Das ist also was anderes da das untere nicht in Klammern steht und da könnte man die 10 nicht einfach in den obersten Zähler schreiben.
Ich freue mich über Aufklärung