Aloha :)
Wir formen den Integranden zunächst etwas um$$I=\int\limits_0^4\frac{\sqrt x\pink{-1}}{\sqrt x+1}\,dx=\int\limits_0^4\frac{(\sqrt x\pink{+1})\pink{-2}}{(\sqrt x+1)}\,dx=\int\limits_0^4\left(1-\frac{2}{(\sqrt x+1)}\right)dx$$
und subsituieren nun die Wurzel:$$u(x)\coloneqq\sqrt x\quad;\quad\frac{du}{dx}=\frac{1}{2\sqrt x}=\frac{1}{2u}\implies dx=2u\,du\quad;\quad u(0)=0\quad;\quad u(4)=2$$
um das folgende Integral zu erhalten:$$I=\int\limits_0^2\left(1-\frac{2}{u+1}\right)2u\,du=\int\limits_0^2\left(2u-\frac{4u}{u+1}\right)du=\int\limits_0^2\left(2u-\frac{(4u\pink{+4})\pink{-4}}{u+1}\right)du$$$$\phantom I=\int\limits_0^2\left(2u-\frac{(4u\pink{+4})}{u+1}-\frac{\pink{(-4)}}{u+1}\right)du=\int\limits_0^2\left(2u-4+\frac{4}{u+1}\right)du$$$$\phantom I=\left[u^2-4u+4\ln|u+1|\right]_0^2=-4+4\ln(3)=-4+\ln(3^4)=\ln(81)-4$$