Hallo,
\( y^{\prime}=-\frac{\cos (x) * \sin (x)}{y^{2}} ; y(0)=2 \)
dy/dx= - (cos(x) sin(x))/y^2
y^2 dy= -cos(x) sin(x) dx
Hinweis: Integral von \( \sin (a x)^{*} \cos (a x) d x=\sin ^{2}(a x) /(2 a)+c \)
y^3/3 = - (sin^2(x)/2 +C | *3
y^3 = - 3(sin^2(x)/2 +3C ; 3C=C1
y= (-(3/2) sin^2(x) +C1)^(1/3)
AWB: y(0)=2 : ->C1=8
y= (-(3/2) sin^2(x) +8)^(1/3) ->das ist bereits die Lösung, wenn nicht anders gefordert
Allgemein gilt: cos(2x)= 1 -2 sin^2(x)
sin^2(x)= (1-cos(2x))/2
\( \begin{array}{l}y=\left(-\frac{3}{2} \sin ^{2}(x)+8\right) ^\frac{1}{3} ; \sin ^{2}(x)=\frac{1-\cos (2 x)}{2} \\ y=\left(-\frac{3}{2}\left(\frac{1-\cos 2 x}{2}\right)+8\right)^{\frac{1}{3}} \\ y=\left(\frac{-3+3 \cos (2 x)}{4}+8\right)^{\frac{1}{3}} \\ y=\left(\frac{-3+3 \cos (2 x)+32}{4}\right)^{\frac{1}{3}} \\ y=\left(\frac{3 \cos (2 x)+29}{4}\right)^{\frac{1}{3}} \\ y=\frac{(3 \cos (2 x)+29)^{\frac{1}{3}}}{4^{1 / 3}} \\ y=\frac{(3 \cos (2 x)+29)^{\frac{1}{3}}}{2^{2 / 3}}\end{array} \)