Scheitelform der Parabel
\(P(60|30)\) liegt auf \(e(t)=a*(x-35)^2+80\)
\(e(60)=a*(60-35)^2+80=625a+80\)
\(625a+80=30\)→\(625a=-50\) →\(a=-\frac{2}{25}\)
\(e(t)=-\frac{2}{25}*(x-35)^2+80\)
Untere Grenze:
\(-\frac{2}{25}*(x-35)^2+80=0\)
\((x-35)^2=1000\)
\(x-35=10*\sqrt{10}\)
\(x_1=35+10*\sqrt{10}\) entfällt
\(x_2=35-10*\sqrt{10}\)
\(E(t)=\int\limits_{35-10*\sqrt{10}}^{60}[-\frac{2}{25}*(x-35)^2+80)]dx\)
\(E(t)=-\frac{2}{25}*\int\limits_{35-10*\sqrt{10}}^{60}[(x-35)^2+80]dx\)
Einschub:
\(\int\limits_{}^{}(x-35)^2dx\)
Substitution:
\(u=x-35\)→ \(x=u+35\) → \(\frac{dx}{du}=1\) → \(dx=du\)
\(\int\limits_{}^{}(x-35)^2dx=\int\limits_{}^{}u^2du=\frac{1}{3}u^3+C\)
Re-Substitution:
\(\int\limits_{}^{}(x-35)^2dx=\frac{1}{3}*(x-35)^3+C\)
\(-\frac{25}{2}*E(t)=[\frac{1}{3}*(x-35)^3+80x]_{35-10*\sqrt{10}}^{60}\\=[\frac{1}{3}*(60-35)^3+80*60]-[\frac{1}{3}*(35-10\sqrt{10}-35)^3+80*(35-10\sqrt{10})]\\=[\frac{1}{3}*(25)^3+4800]-[\frac{1}{3}*(-10\sqrt{10})^3+80*(35-10\sqrt{10})]\\=\)
\([\frac{30025}{3}]-[\frac{1}{3}*(-10\sqrt{10})^3+80*(35-10\sqrt{10})]\\=[\frac{30025}{3}]-[ -10270,75 ]\\≈20279,08\)