\(f(x)=x^2+t\cdot x+16\)
\(x^2+t\cdot x+16=0\) quadratische Ergänzung:
\(x^2+t\cdot x+(\frac{t}{2})^2-\red{(\frac{t}{2})^2}+16=0\) 1.Binom:
\((x+\frac{t}{2})^2=\red{(\frac{t}{2})^2}-16 |\sqrt{~~}\)
\(x_1=- \frac{t}{2} + \sqrt{\red{(\frac{t}{2})^2}-16}\)
\(x_2=- \frac{t}{2} - \sqrt{\red{(\frac{t}{2})^2}-16}\)
Wenn genau eine Nullstelle gesucht wird, ist \( \sqrt{\red{(\frac{t}{2})^2}-16}=0\)
\( (\frac{t}{2})^2-16=0\)
\( \frac{t^2}{4}-16=0\)
\( t^2=64|\sqrt{~~} \)
\( t_1=8\) \(f_1(x)=x^2+8 x+16=(x+4)^2\)
\( t_2=-8\) \(f_2(x)=x^2-8 x+16=(x-4)^2\)