\(f(x)= \frac{1}{3} x^2 + \frac{2}{3} x- \frac{14}{3} |\cdot3 \)
\(3 \cdot f(x)= x^2 + 2 x- 14 \)
Nullstellen:
\( x^2 + 2 x- 14=0 \) → quadratische Ergänzung (\(+ (\frac{2}{2})^2) \):
\( x^2 + 2 x+ (\frac{2}{2})^2- 14=(\frac{2}{2})^2 \)
\( x^2 + 2 x+ 1- 14=1 |+ 14\)
\( x^2 + 2 x+ 1=15\) → 1. Binom :
\( (x+1)^2=15 | \sqrt{~~}\)
1.)
\( x+1= \sqrt{15 }\)
\( x_1= -1 +\sqrt{15 }\)
2.)
\( x+1= - \sqrt{15 }\)
\( x_2= -1 -\sqrt{15 }\)
\(3 \cdot f(x)=[x-(-1 +\sqrt{15 })] \cdot [x-(-1 -\sqrt{15 })] \)
\(3 \cdot f(x)=[x+1 -\sqrt{15 }] \cdot [x+1 +\sqrt{15 }] |:3 \)
\(f(x)=\frac{1}{3} \cdot[x+1 -\sqrt{15 }] \cdot [x+1 +\sqrt{15 }] \)