\( \frac{x}{x-1}+\frac{2}{x-2}=\frac{1}{x-1}+\frac{x}{x-2} |\cdot(x-1)(x-2) \) mit \(x≠1\) \(x≠2\)
\( \frac{x\cdot(x-1)(x-2)}{x-1}+\frac{2\cdot(x-1)(x-2) }{x-2}=\frac{(x-1)(x-2) }{x-1}+\frac{x\cdot(x-1)(x-2)}{x-2} \)
\( x(x-2)+2\cdot(x-1) =(x-2)+x\cdot(x-1) \)
Nun ausmultiplizieren.
u.s.w.
\( \sqrt{4 x-14}=\sqrt{x}-\sqrt{x-6} |^{2} \)
\( 4 x-14=x-2(\sqrt{x-6}\cdot\sqrt{x}) +x-6 \)
\( 2 x-8=-2(\sqrt{x-6}\cdot\sqrt{x}) |:(-2)\)
\( - x+4=(\sqrt{x-6}\cdot\sqrt{x}) |^{2} \) Hinweis: \(\sqrt{x-6}\cdot\sqrt{x}=\sqrt{(x-6)x}\)
u.s.w.
\( a x^{2}+b x+c=0 (a, b, c \in \mathbb{R}, a \neq 0\)
\( a x^{2}+b x+c=0 |-c\)
\( a x^{2}+b x=-c |:a\)
\( x^{2}+\frac{b}{a} x=-\frac{c}{a} \)
\( x^{2}+\frac{b}{a} x+(\frac{b}{2a})^2=-\frac{c}{a}+(\frac{b}{2a})^2 \)
\( (x+(\frac{b}{2a}))^2=-\frac{c}{a}+(\frac{b}{2a})^2= -\frac{c}{a}+ \frac{b^2}{4a^2}= \frac{b^2}{4a^2}-\frac{4ac}{4a^2}=\frac{b^2-4ac}{4a^2}\)
\( (x+(\frac{b}{2a}))^2=\frac{b^2-4ac}{4a^2}|\pm\sqrt{~~}\)
1.)
\( x+(\frac{b}{2a})=\frac{1}{2a}\sqrt{b^2-4ac} \)
\( x_1=(\frac{b}{2a})+\frac{1}{2a}\sqrt{b^2-4ac} \)
2.)
\( x+(\frac{b}{2a})=-\frac{1}{2a}\sqrt{b^2-4ac} \)
\( x_2=(\frac{b}{2a})-\frac{1}{2a}\sqrt{b^2-4ac} \)