0 Daumen
295 Aufrufe

Ich hätte eine Vorgehensfrage. Wie kann ich bei dieser Aufgabe vorgehen um diese Matrizen zu finden. Es gibt ja da diesen Algorithmus, das man zuerst die Bilder der oberen Indexbasis berechnet und diese dann versucht als Linearkombination bzgl der unteren Indexbasis darzustellen und die Koeffizienten sind ja dann die Einträge dieser Matrix. Nur weiss ich bei dieser Aufgabe nicht wie ich das machen soll, ich würd mich über eine Hilfe freuen.


IMG_2125.jpeg

Text erkannt:

ist Basis von \( \mathbb{R}^{2} \quad \) Basis von \( \mathbb{R}^{3} \)
Gegeben zwer lin. Abbildingen mit:
\( \begin{array}{l} f\left(\begin{array}{l} v_{1} \\ v_{2} \end{array}\right)=\left(\begin{array}{c} 3 v_{1} \\ -1 v_{2} \end{array}\right) \\ g\left(\begin{array}{l} v_{1} \\ v_{2} \\ v_{3} \end{array}\right)=\left(\begin{array}{c} v_{2} \\ 2 v_{1}-v_{3} \end{array}\right) \end{array} \)

Aufgaben: Bestinne Darstellengsmahizen \( M_{B}^{B}(f) \) \& \( M_{A}^{B}(g) \)

Avatar von 1,6 k

Was ist Basis \(A\) bei \(M_A^B(g)\)?

1 Antwort

0 Daumen
 
Beste Antwort

\(  f\left(\begin{array}{l} v_{1} \\ v_{2} \end{array}\right) =\left(\begin{array}{l} 3v_1\\ -1v_2 \end{array}\right)\)

==> \(  f\left(\begin{array}{l} -1 \\ 1 \end{array}\right)=\left(\begin{array}{l} -3 \\ -1 \end{array}\right) \) und \(  f\left(\begin{array}{l} 2 \\ 1 \end{array}\right)=\left(\begin{array}{l} 6 \\ -1 \end{array}\right) \)

Und jetzt die Bilder mit der Basis darstellen:

\( \left(\begin{array}{l} -3 \\ -1 \end{array}\right)=a\left(\begin{array}{l} -1 \\ 1 \end{array}\right)+b\left(\begin{array}{l}2 \\ 1 \end{array}\right) \)

Ich bekomme \(  a=\frac{1}{3}   \)  und     \(  b=\frac{-4}{3}  \)

Dann sähe die Matrix \( M_{B}^{B}(f) \) schon mal so aus \( \left(\begin{array}{l} \frac{1}{3}  & ?  \\ \frac{-4}{3}  & ?  \end{array}\right) \)

und die 2. Spalte mit

\( \left(\begin{array}{l} 6 \\ -1 \end{array}\right)=a\left(\begin{array}{l} -1 \\ 1 \end{array}\right)+b\left(\begin{array}{l}2 \\ 1 \end{array}\right) \)

Avatar von 289 k 🚀

Ah verstehe. Wie mache ich das aber mit der anderen Matrix?

Entsprechend. Die Bilder von q und q' und q'' berechnen

und in der Form \( g(q) =a\left(\begin{array}{l} -1 \\ 1 \end{array}\right)+b\left(\begin{array}{l}2 \\ 1 \end{array}\right) \)

mit der Basis B darstellen. Gibt eine Matrix mit 3 Spalten

und 2 Zeilen.

Okay dankeschön

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community