0 Daumen
160 Aufrufe

Aufgabe:

blob.png

Text erkannt:

Consider the function \( f: \mathbb{R} \backslash\{0\} \rightarrow \mathbb{R} \) given by
\( f(x)=\frac{81}{x^{3}}-\frac{3}{x} \)

For any \( x \in \mathbb{R} \backslash\{0\} \), the first and second derivatives are given by
\( f^{\prime}(x)=\frac{3 x^{2}-243}{x^{4}} \)
and
\( f^{\prime \prime}(x)=\frac{972-6 x^{2}}{x^{5}}, \)
respectively.
The two zeros \( z_{1}, z_{2} \) of the first derivative are -9 and 9 , the zeros \( z_{3} \) and \( z_{4} \) of the second derivative are approximately -12.73 and 12.73 , respectively. Furthermore, the (one-sided) limits at \( -\infty, \infty \) and 0 are
\( \begin{array}{l} \lim \limits_{x \rightarrow-\infty} f(x)=0, \\ \lim \limits_{x \rightarrow \infty} f(x)=0, \\ \lim \limits_{x>0} f(x)=-\infty, \end{array} \)
and
\( \lim \limits_{x \searrow 0} f(x)=\infty . \)

Complete the following text so that true statements result.



blob.png

Text erkannt:

Local extrema
At \( z_{1} \) the derivative of \( f \) changes its sign from minus to plus \( \checkmark \), hence \( f \) has a local maximum \( \quad \checkmark \) at \( z_{1} \).
At \( z_{2} \) the derivative of \( f \) changes its sign from plus to minus \( \vee \), hence \( f \) has a local minimum \( \quad \) at \( z_{2} \).
Global extrema
Considering the limits given above, it follows that a global minimum of \( f \) does not exist \( \checkmark \) and that a global maximum of \( f \) does not exist \( \checkmark \).
Curvature
The two zeros of the second derivative and the singularity at zero divide the domain of \( f \) into the four open subintervals \( \left(-\infty, z_{3}\right),\left(z_{3}, 0\right),\left(0, z_{4}\right) \) and \( \left(z_{4}, \infty\right) \).
On \( \left(-\infty, z_{3}\right) \), the second derivative of \( f \) is changing its sign at least once \( \checkmark \) and hence \( f \) is neither convex, nor concave \( \vee \).
On \( \left(z_{3}, 0\right) \), the second derivative of \( f \) is strictly negative \( \quad \checkmark \) and hence \( f \) is concave
On \( \left(0, z_{4}\right) \), the second derivative of \( f \) is strictly negative \( \quad \checkmark \) and hence \( f \) is convex
On \( \left(z_{4}, \infty\right) \), the second derivative of \( f \) is changing its sign at least once \( \checkmark \) and hence \( f \) is neither convex, nor concave \( \checkmark \).
On the whole domain \( \mathbb{R} \backslash\{0\} \), the function \( f \) is hence neither convex, nor concave \( \checkmark \).

 "Changes its sign from minus to plus" und das andere sind falsch oder ist die Curvature Aufgabe da unter falsch?


VG

Avatar von

1 Antwort

0 Daumen

Lies aus dem Graphen ab, was zutrifft:

blob.png

Avatar von 123 k 🚀

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community