\( \int \limits_{0}^{\frac{\pi}{4}} \frac{\cos (x)}{1+\sin ^{2}(x)} \mathrm{d} x \)
\( t=\sin (x) \) ==> \( \frac{dt}{dx}=\cos(x) \) ==> \(dx = \frac{dt}{\cos(x)} \)
Und erst mal ohne Grenzen gibt es
\( \int \frac{\cos (x)}{1+\sin ^{2}(x)} \mathrm{d} x = \int \frac{\cos (x)}{1+t^{2}} \frac{dt}{\cos(x)} = \int \frac{1}{1+t^{2}} dt \)
\(= \arctan(t) + C = \arctan(\sin(x)) + C \).
==> \( \int \limits_{0}^{\frac{\pi}{4}} \frac{\cos (x)}{1+\sin ^{2}(x)} \mathrm{d} x =[ \arctan(\sin(x)) ]_0^{\frac{\pi}{4}}=\arctan(\frac{\sqrt{2}}{2}) \) ≈ 0,615