Ich habe Probleme, die Grenzwerte von
1) $$ \lim\limits_{x\to-\infty} x^3 * e^{-x} $$
2) $$ \lim\limits_{x\to\infty} x * sin(x) $$
zu berechnen.
1) habe ich folgendermaßen probiert: "Exponentiell ist stärker als polynomiell", daher habe ich e betrachtet. Wenn ich da eine minus unendlich einsetze, haben wir e hoch minus minus unendlich, also e hoch unendlich. Das ist doch unendlich (Lsg. ist minus unendlich).
2) habe ich folgendermaßen probiert: Da sin(x) bei x gegen unendlich keinen bestimmten Wert hat, und ich die nächste Aufgabe wo man sin(x) / x (gleicher Limes Wert) berechnen musste (habe ich 0 als Lsg. gehabt, mit der Begründung, dass der Nenner immer größer wird → geht also gegen 0) korrekt hatte, habe ich mir gedacht, dass auch hier eine 0 herauskommt.