\( f(x)=x^{3}-3 x^{2}-24 x \)
Extrema:
\( f'(x)=3x^{2}-6 x-24 \)
\( 3x^{2}-6 x-24=0 \)
\( x^{2}-2 x=8 \)
\( x^{2}-2 x+1=8+1 \)
\( (x-1)^2=9 | ±\sqrt{~~} \)
1.)
\( x-1=3 \)
\( x_1=4 \) → \( f(4)=4^{3}-3 \cdot 4^{2}-24\cdot 4=-80 \)
2.)
\( x-1=-3 \)
\( x_2=-2 \) → \( f(-2)=(-2)^{3}-3 \cdot (-2)^{2}-24\cdot (-2)=28 \)
Art der Extrema:
\( f''(x)=6x-6 \) \( f''(4)=6 \cdot4-6= 18>0 \) Minimum
\( f''(-2)=6 \cdot(-2)-6=-18 \) Maximum