Aufgabe:
Die Differentialgleichung
\( \begin{array}{l} u^{\prime}(t)=15 u(t), \quad t \in(0, \infty) \\ u(0)=u_{0} \end{array} \)
mit \( u_{0} \in \mathbb{R} \backslash\{0\} \) soll numerisch gelöst werden. Welche der folgenden Aussagen ist richtig?
□ Das implizite Euler-Verfahren liefert für jede Schrittweite \( h>0 \) eine beschränkte Lösung und gibt damit das qualitative Verhalten der exakten Lösung wieder.
□ Das implizite Euler-Verfahren liefert für jede Schrittweite \( h>0 \) eine unbeschränkte Lösung und gibt damit das qualitative Verhalten der exakten Lösung wieder.
□ Das explizite Euler-Verfahren liefert für jede Schrittweite \( h>0 \) eine unbeschränkte Lösung und gibt damit das qualitative Verhalten der exakten Lösung wieder.
□ Das Trapez-Verfahren liefert für jede Schrittweite \( h>0 \) eine beschränkte Lösung und gibt damit das qualitative Verhalten der exakten Lösung wieder.
Problem/Ansatz:
meine Frage wäre hier, welche Antwort richtig wäre, ich hätte jetzt gesagt das dritte, aber viele habe da auch was anderes angekreuzt, diese ist ja eigentlich beschränkt oder? wie komme ich hier auf die richtige Lösung, wie muss ich vorgehen ? Danke im Voraus