\( a=4 \mathrm{~cm} \) \( b=7 \mathrm{~cm} \) und \( c=10 \mathrm{~cm} \)
\(w_1= \sqrt{4^2+x^2} \)
\(w_2= \sqrt{(7-x)^2+10^2} \)
\(w_1+w_2\) soll minimal werden.
\(w(x)=\sqrt{4^2+x^2}+ \sqrt{(7-x)^2+10^2}\)
\(w'(x)=\frac{2x}{2\sqrt{16+x^2}}+ \frac{2\cdot(7-x)\cdot (-1)}{2\sqrt{(7-x)^2+100}}\)
\(w'(x)=\frac{x}{\sqrt{16+x^2}}- \frac{(7-x)}{\sqrt{(7-x)^2+100}}\)
\(\frac{x}{\sqrt{16+x^2}}- \frac{(7-x)}{\sqrt{(7-x)^2+100}}=0\)
\(\frac{x}{\sqrt{16+x^2}}=\frac{(7-x)}{\sqrt{(7-x)^2+100}} |^{2} \)
\(\frac{x^2}{16+x^2}=\frac{(7-x)}{(7-x)^2+100} \)
Mit Wolfram: \(x≈0,864\)
\(w_1= \sqrt{4^2+0,864^2}≈4,09 \)
\(w_2= \sqrt{(7-0,864)^2+10^2}≈11,73 \)
Summe \(≈ 15,82 cm\)