s = \( \sqrt{(\frac{3}{4})^2+x^2} \)
t1 = \( \frac{1}{0,75} \)\( \sqrt{(\frac{3}{4})^2+x^2} \)
f(x) = \( \frac{1}{0,75} \)\( \sqrt{(\frac{3}{4})^2+x^2} \) +(1-x) |-(1-x)
-(1-x) = \( \frac{1}{0,75} \)\( \sqrt{(\frac{3}{4})^2+x^2} \) | *0,75
-0,75(1-x) = \(\sqrt{(\frac{3}{4})^2+x^2} \)
-0,75+0,75x = \(\sqrt{(\frac{3}{4})^2+x^2} \) | ()^2
(-0,75x+0,75)2 = (3/4)2 +x2
So richtig?