Ich meine doch, dass man es beweisen kann. Erstmal geht das sicher mit der Definition $$< a, b > := |a| \cdot |b| \cdot cos( \angle ( a, b ) ) $$, kriege ich aber gerade nicht hin.
Mit Koordinatenvektoren geht es allerdings auch. Mache ich jetzt mal für zweidimensionale Vektoren:
$$<a, b+c> = (a_1,a_2) * ( (b_1,b_2) + (c_1,c_2) ) = (a_1,a_2) * ( b_1+c_1, b_2+c_2 ) = a_1 \cdot ( b_1 + c_1 ) + a_2 \cdot ( b_2 + c_2 ) = a_1 \cdot b_1 + a_1 \cdot c_1 + a_2 \cdot b_2 + a_2 \cdot c_2 = a_1 \cdot b_1 + a_2 \cdot b_2 + a_1 \cdot c_1 + a_2 \cdot c_2 = (a_1,a_2) * (b_1,b_2) + (a_1,a_2) * (c_1,c_2) = <a,b> + <a,c>$$
Wobei * das Skalarprodukt und das normale Mal-Zeichen die Multiplikation im Körper ist. Kann man natürlich einfach auf beliebig-dimensionale Vektoren verallgemeinern.