0 Daumen
197 Aufrufe

kann mir einer sagen, ob die zwei Beweise richtig sind?


f ist eine Funktion mit f : D -> W. Hierbei sind A,B beliebige Teilmengen von D.IMG_8455.jpeg

Text erkannt:

- \( f(A \cap B) \subset f(A) \cap f(B) \)

Sei \( x \in f(A \cap B) \) beliebig, so \( \exists m \in A \cap B: f(m)=x \). D.h. \( m \in A \wedge m \in B \).
\( \Rightarrow f(m)=x \in f(A) \wedge f(m)=x \in f(B) \Rightarrow f(m)=x \in f(A) \cap f(B) \text {. } \)
- \( f(A \cup B)=f(A) \cup f(B) \)
"C": Sei \( x \in f(A \cup B)=f(A) \cup f(B) \) beliebig, so \( \exists m \in A \cup B: f(m)=x \).
D.h. \( m \in A \vee m \in B \). Sei \( m \in A \), so ist \( f(m)=x \in f(A) X \) wenn \( m \in B \), so ist \( f(m)=x \in f(B) \). Also ist \( f(m)=x \in f(A) \vee f(m)=x \in f(B) \& d a \) mit \( x \in f(A) \cup f(B) \).
"ว": Sei \( x \in f(A) \cup f(B) \) beliebig, d.h. \( x \in f(A) \vee x \in f(B) \).
Sei \( x \in f(A) \), so \( \exists m \in A: f(m)=x \). Sei \( x \in f(B) \), so \( \exists m \in B: f(m)=x \).
Damit ist \( m \in A \vee m \in B \) \& damit \( m \in A \cup B \).
\( \Rightarrow f(m)=x \in f(A \cup B) \)

Avatar von 1,7 k

1 Antwort

0 Daumen
 
Beste Antwort

Deine beiden Beweise sind korrekt. Hier nur zwei Anmerkungen:

Dein Symbol für \(\subset\) sieht wie der Buchstabe "C" aus.

Außerdem solltest du nicht die zu beweisende Aussage so hinschreiben, als sei sie eine Voraussetzung.


Beweise.JPG

Avatar von 11 k

Ja das mit dieser Gleichheit da, sollte da nicht stehen.

Ich danke Dir! :)

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community