Aloha :)
Polynome von \(n\) Veränderlichen \((x_1;\ldots;x_n)\) sind auf \(\mathbb R^n\) stetig. Rationale Polynome (mehrerer Veränderlicher), wo also Zähler und Nenner jeweils Polynome sind, sind auf ihrem gesamten Definitionsbereich stetig. Daher ist das rationale Polynom$$f_\alpha(x;y)=\frac{xy}{(x^2+y^2)^\alpha}\quad\text{mit}\quad(x;y)\in\mathbb R^2\setminus\{(0;0)\}$$unabhängig von der Wahl des Parameters \(\alpha\) stetig.
Die Definitionslücke bei \((x_0;y_0)=(0;0)\) wird durch folgende Festlegung behoben$$f_\alpha(0;0)\coloneqq 0$$
Damit die Funktion \(f_\alpha\) bei \((x_0;y_0)\) stetig ist, musst du unabhängig von der Richtung aus der du dich dem Punkt \((x_0;y_0)\) näherst und unabhängig von der Art des Weges, den du wählst, immer zum Funktionswert \(f_\alpha(x_0;y_0)\) gelangen. Die Wege können diskret sein, z.B. \((\frac1n;\frac{1}{n^2})\) mit \(n\to\infty\) oder \((\sin\frac1n;0)\) mit \(n\to\infty\). Der Weg kann aber auch kontinuierlich sein.
Wie zeigst du hier nun, dass alle Wege zum Punkt \((0;0)\) auch zum Funktionswert \(f(0;0)=0\) führen? Die Idee ist, dass du einen Kreis um die fragliche Stelle \((0;0)\) legst:$$\binom{x}{y}=\binom{r\cos\varphi}{r\sin\varphi}$$Mit dem Winkel \(\varphi\in[0;2\pi]\) deckst du alle möglichen Richtungen ab, aus denen du dich dem Punkt \((0;0)\) nähern kannst. Als Weg wählst du den kontinuierlichen Weg, indem du den Kreis zusammenziehst, also den Radius \(r\) kontinuierlich gegen \(0\) konvergieren lässt.
$$\lim\limits_{r\to0}\frac{\overbrace{r\cos\varphi}^{x}\cdot\overbrace{r\sin\varphi}^y}{(\underbrace{r^2\cos^2\varphi}_{x^2}+\underbrace{r^2\sin^2\varphi}_{y^2})^\alpha}=\lim\limits_{r\to0}\frac{r^2\cdot\frac12\sin(2\varphi)}{r^{2\alpha}}=\frac12\lim\limits_{r\to0}\frac{\sin(2\varphi)}{r^{2\alpha-2}}\stackrel!=0$$
Für \(\alpha>1\) wird der Bruch unendlich groß.. Daher ist die Funktion \(f_\alpha\) im Punkt \((0;0)\) nicht stetig.
Für \(\alpha=1\) erhältst du den Funktionswert \(0\) nicht für alle Richtungen \(\varphi\in[0;2\pi]\). Also ist die Funktion \(f_\alpha\) nicht stetig in \((0;0)\).
Für \(\alpha<1\) ist der Grenzwert tatsächlich für alle Richtungen \(\varphi\) gleich Null. Daher ist die Funktion \(f_\alpha\) stetig im Punkt \((0;0)\).