Aloha :)
Wir betrachten die Folge:$$a_{n+1}=a_n^2+\frac14\quad;\quad a_0=\frac14$$
Monotonie
Wir untersuchen die Differenz benachbarter Glieder:$$a_{n+1}-a_n=\left(a_n^2+\frac14\right)-a_n=a_n^2-2\cdot\frac12\cdot a_n+\left(\frac12\right)^2=\left(a_n-\frac12\right)^2\ge0$$Für alle \(n\in\mathbb N_0\) gilt daher:\(\quad a_{n+1}\ge a_n\)
Die Folge \((a_n)\) ist monoton wachsend.
Beschränktheit
Da die Folge monoton wächst, ist sie durch \(a_0=\frac14\) nach unten beschränkt.
Die Folge ist aber auch durch \(a_n<\frac12\) nach oben beschränkt, wie die nachfolgende vollständige Induktion zeigt. Die Verankerung bei \(n=0\) ist trivial, da \(a_0=\frac14\), was sicher kleiner als \(\frac12\) ist. Der Induktionsschritt geht nun so:$$\frac14\le a_n<\frac12\implies a_n^2\le\frac14\implies a_n^2+\frac14<\frac12\implies a_{n+1}<\frac12\quad\checkmark$$
Die Folge ist also beschränkt:\(\quad\frac14\le a_n<\frac12\).
Grenzwert
Jede beschränkte monotone Folge konvergiert, also auch der vorliegende Patient.
$$\lim\limits_{n\to\infty}a_{n+1}=\lim\limits_{n\to\infty}\left(a_n^2+\frac14\right)=\left(\lim\limits_{n\to\infty}a_n\right)^2+\frac14\quad\bigg|a\coloneqq\lim\limits_{n\to\infty}a_n=\lim\limits_{n\to\infty}a_{n+1}$$$$a=a^2+\frac14\quad\bigg|-a$$$$a^2-a+\frac14=0\quad\big|\text{2-te binomische Formel}$$$$\left(a-\frac12\right)^2=0\quad\big|\sqrt{\cdots}$$$$a-\frac12=0\quad\big|+\frac12$$$$a=\frac12$$Der gesuchte Grenzwert ist also \(a=\frac12\).