Wo holt ihr die Zahlen und diese Formeln nur her?
Lass dich von den Antworten, die die direkte Formel verwenden, nicht verwirren. Die Formel werden im Unterricht meist gar nicht mehr besprochen. Achte also auf das, was in deinen Unterlagen steht und was ihr dazu gemacht habt.
In der Schule wird häufig das folgende Vorgehen besprochen:
Eine Tangente an einem Graphen einer Funktion \(f\) an einer bestimmten Stelle \(x_0\) (wird meist vorgegeben) hat dort die gleiche Steigung wie der Graph von \(f\) und den gleichen Funktionswert. Daher berechnen wir
1. \(m=f'(x_0)\), die Steigung an dieser Stelle und
2. \(y=f(x_0)\), den zugehörigen \(y\)-Wert an dieser Stelle.
Eine Tangente ist immer eine Gerade (lineare Funktion), weshalb man jetzt den Ansatz \(y=mx+b\) nutzt und die vorgegebene Stelle \(x=x_0\), das berechnete \(m\) sowie das \(y\) einsetzt und nach \(b\) auflöst.
Zum Schluss die Funktionsgleichung in der Form \(t(x)=mx+b\) mit \(m\) und \(b\) notieren.
Für die Normale muss anschließend die Steigung geändert werden, denn Normale und Tangente sind senkrecht zueinander, das heißt, die Steigung der Normalen ist einfach der negative Kehrwert der Steigung der Tangente, also \(-\frac{1}{m}\). Damit kannst du dann mit demselben Ansatz wie bei der Tangente das passende \(b\) für die Normale bestimmen.