0 Daumen
31 Aufrufe

Aufgabe:

Berechne die Differentialgleichung zweiter Ordnung.

\(t x'' - (t - 1)x' - 2x = 0, \\ \quad x(0) = 1, \quad x'(0) = 2 \)


Problem/Ansatz:

Kann mir da jemand helfen? Weil ich komme gar nicht zu einem vernünftigen Ergebnis. Kann man das überhaupt lösen? Weil diese Internet Rechner für Differentialgleichung sagen das es nicht funktioniert.


Jemand von meinen Kommilitonen meinte mal , dass er es mit dem Laplace Transformation gemacht hat. Ich weiß aber nicht wie man es mit dem Laplace Transformation berechnet, da die Gleichung an sich schon komisch ist

Avatar vor von

Wie sieht denn dein Rechenweg dazu aus?

Laplace von \(t x''(t)\):


\(\mathcal{L}\{t x''(t)\} = -\frac{d}{ds} \left(s^2 X(s) - s - 2\right)\)

\(= -\left(2s X(s) + s^2 \frac{dX(s)}{ds} - 1\right)\)


Laplace von \((t-1) x'(t)\):


\(\mathcal{L}\{(t-1) x'(t)\} = -\left(X(s) + s \frac{dX(s)}{ds}\right) - (s X(s) - 1)\)


Laplace von \(-2x(t)\):


\(\mathcal{L}\{-2x(t)\} = -2 X(s)\)


=> Gesamte transformierte Gleichung:


\(-\left(2s X(s) + s^2 \frac{dX(s)}{ds} - 1\right) - \left(X(s) + s \frac{dX(s)}{ds}\right) - (s X(s) - 1) - 2X(s) = 0\)


\(-2s X(s) - s X(s) - X(s) - 2X(s) - s^2 \frac{dX(s)}{ds} - s \frac{dX(s)}{ds} + 2 = 0\)

\(-(3s + 3) X(s) - (s^2 + s) \frac{dX(s)}{ds} + 2 = 0\)



<=> \((3s + 3) X(s) + (s^2 + s) \frac{dX(s)}{ds} = 2\)


<=> \(\frac{dX(s)}{ds} = \frac{2 - (3s + 3) X(s)}{s^2 + s}\)


\(s^3 \frac{dX(s)}{ds} = \frac{2s^3}{s(s + 1)}\)

Danach habe ich integriert

\(s^3 X(s) = \frac{2}{3} s^3 + C\)

Also;

\(X(s) = \frac{2}{3} + \frac{C}{s^3}\)


und danach Rücktransformation:


\(x(t) = \frac{2}{3}\)



Ich weiß wie gesagt nicht ob es überhaupt richtig ist was ich gerechnet habe. Ich habe versucht es mit Laplace transformation zu machen. Ich habe irgendwie versucht eine Lösung zu finden... Das ist einer der Rechenwege die ich gemacht habe

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community