y' = u / v = (x^2 + 4·x - 2) / (x + 2)^2
u = x^2 + 4·x - 2
u' = 2·x + 4 = 2·(x + 2)
v = (x + 2)^2
v' = 2·(x + 2)
y'' = (u' * v - u * v') / v^2
y'' = ((2·(x + 2)) * ((x + 2)^2) - (x^2 + 4·x - 2) * (2·(x + 2))) / (x + 2)^4
y'' = (2 * ((x + 2)^2) - (x^2 + 4·x - 2) * 2) / (x + 2)^3
y'' = ((2·x^2 + 8·x + 8) - 2·x^2 - 8·x + 4) / (x + 2)^3
y'' = 12 / (x + 2)^3