Ich gehe davon aus, dass log der Logarithmus zur Basis 10 ist.
a) log 2 + log 50
Es gilt:
log ( a ) + log ( b ) = log ( a * b )
also:
log ( 2 ) + log ( 50 ) = log ( 2 * 50 ) = log ( 100 )
= 2
b) 3 * log 2 + log 125
Es gilt:
a * log ( b )
= log ( b ) + log ( b ) + ... (a mal ) ... + log ( b )
= log ( b * b * ... ( a mal ) ... * b )
= log ( b a )
also:
3 * log ( 2 ) + log ( 125 )
= log ( 2 3 ) + log ( 125 )
= log ( 8 ) + log ( 125 )
= log ( 8 * 125 )
= log ( 1000 )
= 3
c) log 16 000 - 4 * log 2
Es gilt:
log ( a ) - log ( b ) = log ( a / b )
also:
log ( 16 000 ) - 4 * log ( 2 )
= log ( 16000 ) - log ( 2 4 )
= log ( 16000 / 16 )
= log ( 1000 )
= 3
d) 2 * log 2 + 2 * log 50
= log ( 2 2 ) + log ( 50 2 )
= log ( 4 * 2500 )
= log ( 10000 )
= 4
e) log 3200 - 2 (log 2 + log 8)
= log ( 3200 ) - 2 * log ( 2 * 8 )
= log ( 3200 ) - log ( 16 2 )
= log ( 3200 / 256 )
= log ( 12,5 )
≈ 1,097
f) log 0,7 - log 14 + 2 * log 2 + log 5
= log ( 0,7 / 14 ) + log ( 2 2 ) + log ( 5 )
= log ( 0,05 ) + log ( 4 ) + log ( 5 )
= log ( 0,05 *4 * 5 )
= log ( 1 )
= 0