0 Daumen
497 Aufrufe

Meine Frage ist, wie ich auf das t kommen. Sprich für welchen Wert von t schneiden sich die Funktion Kt mit

ft(x) = te2x - e3x  und die Kurve G von g mit g(x) = 3 - ex mit den Koordinatenachsen?

Ich bin bis lang so weit gekommen aber ich frage mich ob man es so wirklich rechnet oder ob es einen anderen Weg gibt. 

 

ft(2) = te2*2 - e3*2 = 0                                                 

           te- e       = 0                                                  

           te4                = e6                                              

               t * 4          = 6

                t               = 1,5                

 

1,5e2x - e3x = 3 - ex     

e2x(1,5 - ex)= 3 - ex 

→ x1 = ln 1,5   

e2x = 3 -ex 

0     = e2x + ex - 3   

         

Substitution: m = ex                              

 m2 + m - 3                                          

m2 = 1,3     m3 = -2,3

 

Resubstitution: x = lnm

x2 = 0,26      x3 = -0,83

 

Ist mein Ansatz komplett falsch oder rechnet man die Aufgabe so? Ansonsten hab ich keine Ahnung wie man auf die Lösung kommt wäre nett wenn mir jemand weiter helfen könnte :) danke schon man im Voraus. 

Avatar von

1 Antwort

0 Daumen
Hi,

ich weiss nicht genau was Du meinst. Willst Du den Schnittpunkt von \( f_t(x) \) mit g(x) berechnen oder willst Du den Schnittpunkt von \( f_t(x) \) und g(x) mit den Koordinatenachsen berechnen. Außerdem verstehe ich nicht warum Du für x=2 eingesetzt hast. Vielleicht ist die Aufgabenstellung nicht korrekt?
Avatar von 39 k

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community