f(x) = a*x3 + b*x2 + c*x + d
f'(x) = 3*a*x2 + 2*b*x + c
f''(x) = 6*a*x + 2*b
Es gelten folgenden Bedingungen:
f'(0) = 0 -> f'(0) = 3*a*02 + 2*b*0 + c = 0 -> c = 0
f'(-2) = 0 -> f'(-2) = 3*a*(-2)2 + 2*b*(-2) + c = 12*a -4*b = 0 -> b = 3*a (Gl. 1)
f(0) = 0 -> f(0) = a*03 + b*02 + c*0 + d = 0 -> d = 0
f(-2) = -8 ->f(-2) = a*(-2)3 + b*(-2)2 + c*(-2) + d = -8 -> (-8)* a* + 4*b= -8 -> b = -2 + 2*a (Gl. 2)
-> Gl 1 = Gl. 2 -> 3*a = -2 + 2*a -> a = -2 und mit Gl. 1 b = -6
-> f(x) = -2x3 - 6x2