A = 2·h·r + pi·r^2/2 = 25
h = (50 - pi·r^2)/(4·r)
U = 2·h + r·(pi + 2)
U = 2·(50 - pi·r^2)/(4·r) + r·(pi + 2)
U = r·(pi + 4)/2 + 25/r
U' = (pi + 4)/2 - 25/r^2 = 0
r = 5·√2/√(pi + 4) = 2.646 m
h = (50 - pi·(5·√2/√(pi + 4))^2)/(4·(5·√2/√(pi + 4))) = 5·√2/√(pi + 4) = 2.646 m
Damit muss die Höhe tatsächlich so groß sein wie der Radius.