0 Daumen
338 Aufrufe

Sei im folgenden \( V \) ein Banachraum mit Norm \( \|\cdot\| \).

(a) Seien \( \left(x_{k}\right)_{k \in \mathbb{N}} \) und \( \left(y_{k}\right)_{k \in \mathbb{N}} \) konvergente Folgen in \( V \) und \( \left(\alpha_{k}\right)_{k \in \mathbb{N}} \) eine konvergente Folge aus \( \mathbb{R} \). Zeigen Sie, dass dann die Folgen

\( \left(x_{k}+y_{k}\right)_{k \in \mathbb{N}}, \quad\left(\alpha_{k} x_{k}\right)_{k \in \mathbb{N}} \)

konvergieren und geben Sie die zugehörigen Grenzwerte an.

(b) Sei \( \mathcal{L}(V) \) die Menge der Abbildungen \( A: V \rightarrow V \) für welche eine Konstante \( C \) mit \( \|A x\| \leq C\|x\| \) für alle \( x \in V \) existiert. Zeigen Sie, dass die Operatornorm

\( \|A\|:=\sup _{x \in V \backslash\{0\}} \frac{\|A x\|}{\|x\|} \)

auf \( \mathcal{L}(V) \) eine Norm definiert und mit dieser Norm \( \mathcal{L}(V) \) vollständig ist.

Avatar von

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community