a) f(x) = LN(x^2) | Kettenregel
f'(x) = 1/x^2 * 2x = 2 * x^{-1}
f''(x) = -2 * x^{-2}
b) f(x) = x + LN(2x)
f'(x) = 1 + 1/(2x) * 2 = 1 + x^{-1}
f''(x) = -x^{-2}
c) f(x) = x^2 * LN(x) | Produktregel
f'(x) = 2x * LN(x) + x^2 * 1/x = 2x·LN(x) + x
f''(x) = 2·LN(x) + 2x·1/x + 1 = 2·LN(x) + 3
d) f(x) = LN(x)/x | Quotientenregel
f'(x) = (1/x * x - LN(x) * 1) / x^2 = (1 - LN(x))/x^2
f''(x) = (2·LN(x) - 3)/x^3
e) f(x) = (LN(x))^{1/2}
f'(x) = 1/(2·x·√(LN(x)))
f''(x) = - (2·LN(x) + 1)/(4·x^2·LN(x)^{3/2})