0 Daumen
578 Aufrufe

So, ich mal wieder.

Die Aufgabe ist wie folgt; Es gibt 9 Telefone. Wie viele interne Verbindungen können hergestellt werden?

Meine Antowort:

Der Erste kann 8 andere anrufen. Dem zweiten bleiben 7, da der erste ihn ja schon angerufen hatte. So geht das weiter. Mathematisch ausgedrückt würde ich dann also sagen;

∑ (i=0 bis 8) xi  , also 36 Verbindungen.

Liege ich mit dem Gedanken richtig oder was meint Ihr?

Danke schon mal für Eure Antworten!

Avatar von

1 Antwort

+1 Daumen

Ja, du liegst richtig.

 

 T1T2T3T4T5T6T7T8T9
T1         
T2x        
T3xx       
T4xxx      
T5xxxx     
T6xxxxx    
T7xxxxxx   
T8xxxxxxx  
T9xxxxxxxx 

Gezählt werden nur die markierten Felder in der Tabelle.

In der Tabelle insgesamt sind 9² = 81 Felder.

Die Anzahl der Felder der Diagonale müssen abgezogen werden (Man kann nicht mit sich selbst telefonieren),
bleiben 81 - 9 = 72

Nun muss die Anzahl der Felder im oberen Dreieck abgezogen werden (wahlweise im unteren), da die Anshclüsse sonst doppelt gezählt werden (T1 telefoniert mit T3 =  T3 telefoniert mit T1).

Also halbiert sich die Zahl auf 36.

Zahlen dieser Art heißen Dreeickszahlen. Die Formel lässt sich aus diesen Überlageungen auch allgemein herleiten.

Du hast die Aufgabe ja selbst gelöst, aber ich hoffe, die zusätzlichen Erklärungen sind hilfreich oder interessant für dich.

Avatar von

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community