a)
f(x) = 4·x - x^3
f'(x) = 4 - 3·x^2
Nullstellen f(x) = 0
4·x - x^3 = 0
x = -2 ∨ x = 2 ∨ x = 0
Steigungen
f'(-2) = -8
f'(2) = -8
f'(0) = 4
b)
f(x) = x^4 - 5·x^2 + 4
f'(x) = 4·x^3 - 10·x
Nullstellen f(x) = 0
x^4 - 5·x^2 + 4 = 0
x = -2 ∨ x = 2 ∨ x = -1 ∨ x = 1
Steigungen
f'(-2) = -12
f'(-1) = 6
f'(1) = -6
f'(2) = 12
c)
f(x) = 3·x^2 - x^4
f'(x) = 6·x - 4·x^3
Nullstellen f(x) = 0
3·x^2 - x^4 = 0
x = -√3 ∨ x = √3 ∨ x = 0
Steigungen
f'(-√3) = 6√3
f'(0) = 0
f'(√3) = -6√3