∫ x/√(x^2 + 16) dx
Substitution
z = x^2 + 16
dz = 2·x dx
∫ x/√z dz/(2·x)
= ∫ 1/(2·√z) dz
= ∫ 1/2·z^{- 1/2} dz
= z^{1/2}
= √z
Resubstitution
= √(x^2 + 16)
∫ e^{3·x}·COS(2·x) dx
Partielle Integration
∫ e^{3·x}·COS(2·x) dx
= 1/3·e^{3·x}·COS(2·x) - ∫ 1/3·e^{3·x}·(- 2·SIN(2·x)) dx
= 1/3·e^{3·x}·COS(2·x) + 2/3·∫ e^{3·x}·SIN(2·x) dx
∫ e^{3·x}·SIN(2·x) dx
= 1/3·e^{3·x}·SIN(2·x) - ∫ 1/3·e^{3·x}·(2·COS(2·x)) dx
= 1/3·e^{3·x}·SIN(2·x) - 2/3·∫ e^{3·x}·COS(2·x) dx
∫ e^{3·x}·COS(2·x) dx = 1/3·e^{3·x}·COS(2·x) + 2/3·(1/3·e^{3·x}·SIN(2·x) - ∫ 2/3·e^{3·x}·COS(2·x) dx)
∫ e^{3·x}·COS(2·x) dx = 1/3·e^{3·x}·COS(2·x) + 2/9·e^{3·x}·SIN(2·x) - 4/9·∫ e^{3·x}·COS(2·x) dx)
13/9·∫ e^{3·x}·COS(2·x) dx = 1/3·e^{3·x}·COS(2·x) + 2/9·e^{3·x}·SIN(2·x)
∫ e^{3·x}·COS(2·x) dx = 3/13·e^{3·x}·COS(2·x) + 2/13·e^{3·x}·SIN(2·x)
∫ √(LN(x))/x dx
Substitution
z = LN(x)
dz = 1/x dx
= ∫ √z/x dz·x
= ∫ √z dz
= 2/3·z^{3/2}
Resubstitution
= 2/3·LN(x)^{3/2}