∫ ft(x) dx
Substituiere z = 1 + t*x2 -> dz/dx = 2*t*x -> dx = dz/(2*t*x)
-> ∫ ft(x) dx = ∫ (t*x)/(√z) * dz/(2*t*x) = ∫ 1/(2*√z) * dz = (1/2) ∫ (z)(-1/2) * dz = (1/2)*[(z)(-1/2)+1/(-1/2) + 1)] + C
-> (1/2)*[(z)(1/2)/(1/2)] + C = (z)(1/2) + C
Rücksubstitution -> ∫ ft(x) dx = (1 + t*x2)(1/2) + C = √(1 + t*x2) + C