x2 heißt sicherlich x^2
lg der 10er Logarithmus
lg[√(x2 + 1)]−2lg(x) = 0
lg [√(x2 + 1)] = 2lg (x)
lg [√(x2 + 1)] = lg (x^2) | 10^
√(x2 + 1) = x^2 | ( )^2
x^2 + 1 = x^4
Substitution
a = x^2
a + 1 = a^2
a^2 - a = 1
a^2 - a + (1/2)^2 = 1 + 1/4 = 1.25
( a - 1/2)^2 = 1.25
a - 1/2 = ±√ 1.25 = ± 1.118
a = ± 1.118 + 1/2
a = 1.618
a = - 0.618 entfällt
x = √ a = √ 1.618
x = 1.272
Probe
lg [ √(1.272^2 + 1) ] −2 * lg (1.272) = 0
lg ( 1.618 ) - 2 * lg ( 1.272 ) = 0
0.209 - 2 * 0.1045 = 0 | stimmt