Übung zu Normalen, Näherungsverfahren, Flächeninhalt, Extremalproblem:
Gegeben ist die Funktion \( f(x)=\left(x^{2}-2 x\right) \cdot e^{0.5 x} \).
a) Wo schneidet die Kurvennormale im Wendepunkt \( W_{1}\left(-6 \mid 48 \mathrm{e}^{-3}\right) \) die Kurvennormale im Wendepunkt \( \mathrm{W}_{2}(0 \mid 0) ? \)
b) Wo schneidet der Graph von \( \mathrm{f} \) die Winkelhalbierende des 1. Quadranten? Bestimmen Sie den Schnittpunkt näherungsweise (auf 2 Nachkommastellen).
c) Wo schneidet der Graph der Funktion \( g(x)=e^{0.5x} \) den Graphen von \( f \) ? Wie groß ist der Inhalt des von \( \mathrm{f} \) und \( \mathrm{g} \) umschlossenen Flächenstücks \( \mathrm{B} \)? Verwenden Sie die Stammfunktion \( \mathrm{F} \) von \( \mathrm{f} \) aus Übung 9a.
d) An welcher Stelle in dem umschlossenen Flächenstück B wird die Differenz der Funktionswerte von g und f maximal?