Also, es soll folgendes gezeigt werden:
$$ (A\cup B) \setminus (A \cap B) = (A\setminus B) \cup (B\setminus A) $$
Ich mach mal die erste Inklusion ( \((A\cup B) \setminus (A \cap B) \subset (A\setminus B) \cup (B\setminus A)\) ).
Sei \( x\in (A\cup B) \setminus (A \cap B) \) beliebig. Dann gilt \(x\in A \cup B\) und \( x\notin A\cap B\), also liegt \(x\) in \(A\) oder \(B\), aber nicht im Schnitt. Betrachte zwei Fälle.
1. Wenn \(x\in A\) ist, so muss \(x\notin B\) gelten, denn sonst wäre es im Schnitt. Folglich ist \(x\in A\setminus B\).
2. Wenn \(x\in B\) ist, so muss \(x\notin A\) gelten, denn sonst wäre es im Schnitt. Folglich ist \(x\in B\setminus A\).
Also ist insgesamt \(x\in A\setminus B\) oder \(x\in B\setminus A\), somit ist \(x\in (A\setminus B) \cup (B\setminus A)\).
Die zweite Inklusion überlasse ich dir