betrachte die \(N\)-ten Partialsummen der Reihe unter Beachtung des Hinweises.$$\sum_{n=1}^N\frac{2n+1}{n^4+2n^3+n^2}=\sum_{n=1}^N\frac{(n+1)^2-n^2}{n^2(n+1)^2}\\=\sum_{n=1}^N\left(\frac1{n^2}-\frac1{(n+1)^2}\right)=1-\frac1{(N+1)^2}.$$Daraus folgt die Konvergenz der Reihe, deren Summe nun leicht durch Grenzwertbildung zu bestimmen ist.